TRƯỜNG ĐẠI HỌC QUY NHƠN
KHOA SINH - KĨ THUẬT NÔNG NGHIỆP
BÁO CÁO GIỮA KÌ
MÔN: NĂNG LƯỢNG SINH HỌC
GIẢNG VIÊN: VÕ VĂN TOÀN
SV THỰC HIỆN: PHAN THỊ HỒNG PHỤNG
LỚP CAO HỌC K20
CHỦ ĐỀ “ATP synthase”
Năm học 2017-2018
Sơ lược về ATP synthase
ATP synthase là tên của một enzym có khả năng tổng hợp adenosine triphotsphate (ATP) từ  adenosine triphotsphate (ADP) và photphatse vô cơ (Pi) và giải phóng chúng dưới một dạng năng lượng. Năng lượng này thường ở dạng proton di chuyển bởi một thế điện hóa tỉ như từ lumen của thylakoid vào chất nền lục lạp hay từ khoảng không giữa hai màng ti thể vào chất nền ti thể.
Enzyme này có vai trò quan trọng then chốt trong gần như tất cả các cơ thể sống vì ATP là đơn vị năng lượng thông dụng trong các cơ thể sống. Kháng sinh oligomycinmức chế tiểu đơn vị FO của ATP synthase.
ATP synthase nhìn chung là một chu trình tổng hợp ATP từ ADP.
ATP synthase
Paul D. Boyer và John E. Walker đã cho thấy enzym synthase ATP sản xuất ATP như thế nào. Sự khác biệt về nồng độ ion hiđrô trên màng tế bào thúc đẩy enzyme tổng hợp ATP.
Paul D. Boyer
John E. Walker
Paul D. Boyer và John E. Walker đã đoạt giả Nobel về hóa học năm 1997
Vị trí của enzym
ATP synthase được tìm thấy trong:
+ màng thylakoit của lục lạp
+ màng trong ty thể ở tế bào nhân thực
+ màng tế bào chất của vi khuẩn.
Cấu tạo của ATP synthase
ATP synthase là một protein bao gồm nhiều tiểu đơn vị với tổng khối lượng hơn 50 vạn dalton
Cấu trúc hiện nay của ATP synthase được nhận biết bằng phương pháp soi kính hiển vi điện tử dưới nhiệt độ thấp
Trong ti thể, ATP synthase bao gồm 2 phần chủ yếu được đặt tên là F1 và FO.
Phần FO của enzyme nằm trong màng ti thể, gồm ba loại protein mang tên a, b, c. Ở vi khuẩn và ti thể của nấm men, kết cấu thường thấy của FO là a1b2c10, tuy nhiên ở ti thể của động vật có đến 12 tiểu đơn vị c còn ở lục lạp có 14. Trong tất cả các trường hợp, tiểu đơn vị c sắp xếp thành một vòng tròn trên mặt phẳng màng sinh chất. Tiểu đơn vị a và b gắn kết chặt chẽ với nhau nhưng không liên kết với vòng c
Phần F1 của enzyme giống như một quả đấm thòi ra ngoài màng, nằm ở trong phần chất nền của ti thể. Đây là một phức hợp tan trong nước, bao gồm 5 polypeptide có kết cấu là α3β3γδε. Phần dưới của tiểu đơn vị γ là một cấu trúc dạng cuộn nằm gọn vào giữa vòng c của FO và bắt dính vào đấy. Tiểu đơn vị ε gắn chặt với γ và cũng gắn chặt với một số tiểu đơn vị c nói trên. Tiểu đơn vị α và β nằm xen kẽ với nhau theo một vòng tròn để hình thành một thể đối xứng sáu bên.
Vì vậy các tiểu đơn vị a, b của FO cùng với các tiểu đơn vị δ, α3, β3 hình thành một cấu trúc chặt chẽ neo vào màng sinh chất. Tiểu đơn vị b hình que hình thành một cấu trúc tĩnh (xtato) ngăn không cho α3, β3 di chuyển trong khi tựa vào tiểu đơn vị γ
Tiểu đơn vị δ hình thành một liên kết bền vững tới một tiểu đơn vị α và một tiểu đơn vị β kế bên; đồng thời cũng liên kết với tiểu đơn vị b của FO.
Phần F1 có kích thước lớn và có thể được nhìn thấy qua kính hiển vị điện tử bằng phép nhuộm âm tính. Chúng là những cấu trúc có đường kính 9 nm nằm rải rác trên bề mặt ti thể. Ban đầu chúng được gọi là các cấu trúc sơ cấp và được cho rằng có chức năng bao hàm toàn bộ bộ máy hô hấp trong ti thể.
Tuy nhiên sau nhiều thí nghiệm, Ephraim Racker và các đồng sự (những người đâu tiên phân lập được F1 năm 1961) đã cho thấy F1 có liên quan tới hoạt tính của ATPase trong các ti thể đơn lẻ và với hoạt tính của ATPase trong các cấu trúc cấp độ dưới ty thể tạo ra bằng cách cho ti thể tiếp xúc với sóng siêu âm.
Cụ thể hơn, khi F1 bị tách khỏi màng ti thể thì chúng mất khả năng tổng hợp ATP mà chỉ còn khả năng thủy phân ATP (vì vậy chúng được gọi tên là ATPase), chỉ khi ráp chúng lại với FO thì khả năng sinh tổng hợp ATP mới được khôi phục
Hoạt tính của ATPase còn có liên quan mật thiết hơn tới sự tổng hợp ATP bởi một chuỗi các thí nghiệm trên nhiều phòng thí nghiệm khác nhau.
Cơ chế hoạt động của ATP synthase
Trong các thập niên 1960 và 1970, Paul Delos Boyer phát triển thuyết về cơ chế thay đổi liên kết, hay là "lật qua lật lại", cơ chế này đã postulated that sự sinh tổng hợp ATP đi đôi với sự thay đổi về hình thể của ATP synthase bằng cách xoay vòng tiểu đơn vị gamma.
Nhóm nghiên cứu của John Ernest Walker, tại Phòng thí nghiện Sinh học phân tử MRC của Cambridge, đã tinh thể hóa đơn vị xúc tác F1của ATP synthase. Cấu trúc này, tại thời điểm đó là cấu trúc protein bất đối xứng lớn nhất từng được biết, cho thấy rằng mô hình xúc tác xoay tròn của Boyer về tính chất là đúng.
Nhờ việc làm sáng tỏ cơ chế này, Boyer và Walker cùng nhận được một nửa Giải Nobel Hóa học năm 1997. Jens Chistian Skou nhận được nửa còn lại của giải năm đó nhờ vào việc khám phá ra Na+, K+ -ATPase, một enzyme vận chuyển ion.
Cơ chế hoạt động của ATP synthase
Jens Chistian Skou
Mỗi tiểu đơn vị β của ATP synthase đều có khả năng bắt các phân tử ADP và Pi để xúc tác phản ứng tổng hợp chúng thành ATP
Tuy nhiên vì β nằm trên phần F1 - nơi cách màng ti thể 9-10 nm nên sự liên hệ giữa việc sinh tổng hợp ATP với dòng chảy proton là gián tiếp. Cơ chế hoạt động của ATP synthase được chấp nhận rộng rãi nhất hiện nay là cơ chế bám-thay đổi (binding-change mechanism).[4] 
Theo đó, dòng proton lưu chuyển qua FO sẽ làm xoay các tiểu đơn vị c, kéo theo đó là sự xoay tròn của các tiểu đơn vị γ và ε gắn vào chúng. Sự xoay tròn này ảnh hưởng đến cấu hình của khu vực bám lấy nucleotide của tiểu đơn vị β[4], cụ thể qua sự xoay đó β sẽ trải qua ba trạng thái.[6]
+ Trạng thái mở (O - màu đỏ trong hình động), lúc này β bắt ATP rất kém và bắt ADP và Pi cũng rất yếu.
+ Khi ADP và phosphate bắt đầu bám vào tiểu đơn vị β, dòng chảy proton sẽ làm tiểu đơn vị γ xoay 120 độ, khiến β trải qua một sự thay đổi về cấu hình và chuyển sang trạng thái lỏng lẻo (L - màu cam) với việc liên kết chặt chẽ hơn với ADP và Pi vừa mới bám vào.
+ Tiếp đó, β chuyển sang trạng thái chặt (T - màu hồng), chúng bám ADP và Pi chặt tới mức hai chất này kết hợp thành ATP, trong trạng thái chặt ATP vừa mới sản sinh cũng vẫn bị β bám dính với ái lực rất cao. Phản ứng tổng hợp này không cần năng lượng bên ngoài bổ sung. Cuối cùng, một lượt quay của tiểu đơn vị γ đưa β trở về trạng thái mở, giải phóng ATP và đón nhận ADP cùng phosphate mới.
Như vậy cứ mỗi lần γ xoay 120 độ thì các β đều thay đổi trạng thái và cứ một vòng quay 360 độ của γ sẽ tổng hợp được 3 phân tử ATP. ATP và ADP cũng có thể bám vào các khu vực có chức năng điều hòa và thay đổi hoạt tính của ATP synthase tại tiểu đơn vị α, cụ thể chúng sẽ điều chỉnh tốc độ sinh tổng hợp ATP tùy theo nồng độ ATP, ADP trong chất nền ti thể; mặc dù việc này không có ảnh hưởng ở mức độ trực tiếp đến bản thân quá trình sinh tổng hợp ATP
Vai trò sinh lý và hoạt tính của ATP synthase
Trong các vi khuẩn có khả năng hô hấp dưới các điều kiện sinh lý, ATP synthase nhìn chung hoạt động theo hướng ngược lại, dùng để sản sinh ATP bằng cách sử dụng lực vận động proton tạo bởi chuỗi chuyển điện tử như là một nguồn năng lượng. Quá trình tạo năng lượng như thế này được gọi là sự phosphorylate ôxi hóa. Một quá trình tương tự xảy ra trong ti thể, nơi ATP synthase có mặt tại màng trong của nó (phần F1 hướng về chất nền, nơi diễn ra sự tổng hợp ATP). Vai trò và sự hoạt động của ti thể trong các sinh vật nhân chuẩn giúp tế bào giữ được hàm lượng ATP cao gấp 10 lần ADP và nhờ đó giữ được phản ứng thủy phân ATP luôn xảy ra theo chiều thuận.
Giống như các enzyme khác, hoạt tính của F1FO và ATP synthase mang tính thuận nghịch, hoán chuyển giữa thế điện hóa proton và năng lượng trong các liên kết hóa học. Phản ứng xảy ra theo chiều tổng hợp hay thủy phân ATP phụ thuộc vào sự cân bằng giữa năng lượng độ dốc của thế điện hóa proton (Gp, với giá trị luôn âm) và sự chênh lệch giữa năng lượng tự do Gibbs (ΔG, với giá trị luôn dương) trong phản ứng thủy phân ATP; sự cân bằng của hai giá trị này xảy ra khi Gp + ΔG = 0. Gp tỉ lệ trực tiếp với giá trị của lực vận động proton xuyên qua màng ti thể, còn ΔG tùy thuộc vào tỉ lệ của ATP với ADP và Pi[13] Cụ thể, Gp + ΔG < 0, ATP synthase sẽ đóng vai trò sản sinh ATP nhằm thay đổi tỉ lệ ATP với ADP và Pi. Tương tự nếu Gp + ΔG > 0, ATP synthase sẽ thủy phân ATP để bơm thêm proton nhằm tăng cường sự chênh lệch thế điện hóa.
ATP synthase trong các cơ thể sống
Thực vật
Trong thực vật, ATP synthase cũng tồn tại trong các lục lạp (CF1FO-ATP synthase), cụ thể chúng nằm lẫn trong lớp màng của các thylakoid. Trong đó phần CF1 hướng về chất nền, nơi pha tối của quang hợp - tức Chu trình Calvin - diễn ra và đó cũng là nơi sinh tổng hợp ATP. Cấu trúc tổng quát và cơ chế hoạt động của ATP synthase tại lục lạp gần như là giống với ti thể. Tuy nhiên, thế điện hóa và lực vận động proton ở lục lạp không phải được hình thành bởi chuỗi chuyển điện tử trong hô hấp mà bởi các protein quang hợp chính.
ATP synthase trong các cơ thể sống
ATP synthase phân lập từ ti thể ở mô tim bò (Bos taurus) - xét về mặt cấu trúc và hóa sinh - là loại ATP synthase điển hình nhất. Tim bò được dùng như một nguồn cung cấp ATP synthase vì hàm lượng ti thể trong cơ tim bò rất cao.
ATP synthase trong các cơ thể sống
Đây là loại đơn giản nhất hiện được biết đến trong dòng họ ATP synthase, bao hàm tám loại tiểu đơn vị protein.
Trực khuẩn đại tràng E. coli
ATP synthase trong các cơ thể sống
Nấm men
Trong số các sinh vật nhân chuẩn, ATP synthase của nấm men được nghiên cứu kỹ nhất. Nó bao gồm 5 tiểu đơn vị ở phần F1 và 8 ở phần FO; 7 protein kèm theo cũng đã được nhận diện.[15] Phần lớn các protein này đều có các chất tương đồng trong cơ thể sống của các sinh vật nhân chuẩn khác
Người
Dưới đây là danh sách các gien mã hóa cho các protein của ATP synthase trong người:
ATP5A1, ATP5AL1
ATP5B, ATP5BL1
ATP5C2, ATP5D, ATP5E, ATP5F1, ATP5G1, ATP5G2, ATP5G3, ATP5H, ATP5HP1, ATP5I, ATP5J, ATP5J2, ATP5L, ATP5L2, ATP5O, ATP5S
ATP6, ATP6AP1, ATP6AP2
ATPSBL1, ATPSBL2
MT-ATP6, MT-ATP8
ATP synthase trong các cơ thể sống
CẢM ƠN MỌI NGƯỜI ĐÃ XEM!
CHÚC THẦY VÀ CÁC BẠN
VUI - KHỎE
nguon VI OLET