Chú ý:Đây là bản xem thử online, xin hãy chọn download miễn phí bên dưới để xem bản đẹp dạng .doc
Có thể download miễn phí file .doc bên dưới

HÀM SỐ TRONG THI TN-ĐH

Đăng ngày 10/2/2009 7:30:46 PM | Thể loại: Toán học 6 | Lần tải: 116 | Lần xem: 0 | Page: 1 | FileSize: 0.02 M | File type: doc
0 lần xem

đề thi HÀM SỐ TRONG THI TN-ĐH, Toán học 6. . nslide.com chia sẽ đến cộng đồng thư viện HÀM SỐ TRONG THI TN-ĐH .Để chia sẽ thêm cho các bạn nguồn tài liệu tham khảo phục vụ cho công tác giảng dạy, học tập và nghiên cứu khoa học, trân trọng kính mời đọc giả đang tìm cùng xem , đề thi HÀM SỐ TRONG THI TN-ĐH trong chuyên mục Toán học 6 được chia sẽ bởi bạn Lưu Phạm Quang đến mọi người nhằm mục đích nâng cao kiến thức , tài liệu này được giới thiệu vào chủ đề Toán học 6 , có tổng cộng 1 trang, thuộc định dạng .doc, cùng chuyên mục còn có Đề thi Đề thi Toán học Toán học 6 ,bạn có thể tải về miễn phí , hãy chia sẽ cho cộng đồng cùng nghiên cứu Câu 1: Cho hàm số y = x3 – 6x2 + 9x Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số, thêm nữa Từ đồ thị (C) hãy suy ra đồ thị hàm số y = |x|3 – 6x2 + 9|x|, bên cạnh đó Biện luận theo m số nghiệm của phương trình: |x|3 – 6x2 + 9|x| - 3 + m = 0, bên cạnh đó Câu 2: Cho hàm số  Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số,còn cho biết thêm Tìm các điểm trên (C), mà tại ấy tiếp tuyến của (C)

https://nslide.com/de-thi/ham-so-trong-thi-tn-dh.mf4vuq.html

Nội dung

Cũng như các thư viện tài liệu khác được thành viên chia sẽ hoặc do tìm kiếm lại và chia sẽ lại cho các bạn với mục đích nâng cao trí thức , chúng tôi không thu tiền từ người dùng ,nếu phát hiện nội dung phi phạm bản quyền hoặc vi phạm pháp luật xin thông báo cho website ,Ngoài thư viện tài liệu này, bạn có thể download Tải tài liệu luận văn,bài tập phục vụ nghiên cứu Một số tài liệu tải về mất font không xem được, nguyên nhân máy tính bạn không hỗ trợ font củ, bạn download các font .vntime củ về cài sẽ xem được.
Câu 1: Cho hàm số y = x3 – 6x2 + 9x <ĐHSP1>
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
Từ đồ thị (C) hãy suy ra đồ thị hàm số y = |x|3 – 6x2 + 9|x|. Biện luận theo m số nghiệm của phương trình: |x|3 – 6x2 + 9|x| - 3 + m = 0.
Câu 2: Cho hàm số  <ĐHNN>
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
Tìm những điểm trên (C), mà tại đó tiếp tuyến của (C) vuông góc với đường thẳng .
Câu 3: Cho hàm số  (1) <ĐHBK>
Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi .
Tìm m để đồ thị của hàm số (1) cắt trục hoành tại ba điểm phân biệt.
Câu 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số . <ĐHGTVT>
Câu 5: Cho hàm số y = x3 – 3x (1)
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 1.
Chứng minh rằng: khi m thay đổi, đường thẳng d: y = m(x + 1) + 2 luôn cắt đồ thị hàm số (1) tại một điểm A cố định.
Xác định m để (C) cắt d tại ba điểm phân biệt A, B, C sao cho tiếp tuyến với (C) tại B và C vuông góc với nhau.
Câu 6: Cho hàm số y = x3 – 3(a – 1)x2 + 3a(a – 2)x + 1 <ĐHL - Dược>
Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi a = 0.
Câu 7: Cho hàm số 
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số với m = 0.
Trong tất cả các tiếp tuyến với (C), hãy tìm tiếp tuyến có hệ số góc nhỏ nhất.
Chứng minh rằng: với mọi m, hàm số luôn có cực đại và cực tiểu. Hãy xác định m để khoảng cách giữa điểm cực đại và cực tiểu là nhỏ nhất.
Câu 8: Cho hàm số y = 2x3 + 3x2 -12x – 1 <ĐHCĐ>
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
Tìm điểm M thuộc đồ thị (C) sao cho tiếp tuyến của (C) tại điểm M đi qua gốc toạ độ.
Câu 9: Cho hàm số y = x3 – 3x2 <ĐHAN>
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
Viết phương trình tiếp tuyến với đồ thị (C), biết tiếp tuyến ấy vuông góc với đthẳng .
Câu 10: Cho hàm số y = 2x3 – 3(2m + 1)x2 + 6m(m + 1)x + 1 (1)
Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = 0.
Chứng minh rằng: với mọi m hàm số (1) luôn đạt cực trị tại x1, x2 và x2 – x1 không phụ thuộc m
Câu 11: Cho hàm số y = 2x3 + 3(m – 3)x2 + 11 – 3m (Cm) <ĐHQG.HCM>
Cho m = 2. Viết phương trình tiếp tuyến củ (C2), biết tiếp tuyến đi qua điểm .
Tìm các giá trị của m để hàm số có hai cực trị. Gọi M1 và M2 là các điểm cực trị, tìm m để các điểm M1, M2 và B(0; -1) thẳng hàng.
Câu 12: Cho hàm số y = (m + 2)x3 + 3x2 + mx - 5
Với những giá trị nào của m thì hàm số có cực đại, cực tiểu.
Khảo sát và vẽ đồ thị (C) của hàm số khi m = 0.
Chứng minh rằng: từ điểm M(1; -4) có 3 tiếp tuyến với đồ thị (C).
Câu 13: Cho hàm số  <ĐHHuế>
Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1.
Xác định m để đồ thị hàm số (1) có các điểm cực đại và cực tiểu đxứng nhau qua đthẳng y = x.
Câu 14: Cho hàm số y = x3 – 3mx2 + 3(2m – 1)x + 1 (Cm).
Khảo sát sự biến thiên và vẽ đồ thị khi m = 2.
Xác định m sao cho hàm số đồng biến trên tập xác định.
Xác định m sao cho hàm số có một cực

Sponsor Documents