Chú ý:Đây là bản xem thử online, xin hãy chọn download miễn phí bên dưới để xem bản đẹp dạng .doc

HÀM SỐ BẬC BA

 

BÀI 01: VẤN ĐỀ LIÊN QUAN TIẾP TUYẾN & CỰC TRỊ
Cho hàm số , đồ thị , m : tham số
1) Cho m = 2 đồ thị là
a. Tìm phương trình các đường thẳng đi qua A(,4) và tiếp xúc
b. Tìm trên đồ thị những điểm K sao cho qua K:
* Kẻ duy nhất một tiếp tuyến đến
* Kẻ hai tiếp tuyến phân biệt đến
* Kẻ đúng hai tiếp tuyến đến mà 2 tiếp tuyến tạo nhau một góc
* Kẻ 3 tiếp tuyến đến
* Kẻ 3 tiếp tuyến mà trong đó có hai tiếp tuyến vuông góc đế
c. Tìm tọa độ tiếp điểm của tiếp tuyến (t) và đồ thị . Biết rằng (t):
* Song song với đường thẳng :
* Vuông góc với đường thẳng :
* Có hệ số góc
d.Tìn trên đồ thị những điểm E,F đối xứng nhau qua góc tọa độ
2) m là tham số , đồ thị
a. CMR: với thì hàm số có hai cực trị (, , (,
* Định m để , và B(0, - 1) thẳng hàng
* Định m để :
+) + > 4
+) | - | = 27
b. Định m để :
+) Tam giác O vuông tại O; O là gốc tọa độ
+) :
&) Cùng phương với đt: y = -4x + 4
&) Vuông góc với đường phân giác thứ nhất của mặt phẳng tọa độ
c. Định m để cắt trục Ox tại 3 điểm phân biệt
+) Trong đó có 2 hoành độ dương
+) Lập cấp số cộng
d. Với m nào thì tiếp tuyến tại điểm x = 1 cắt 2 trục tọa độ tạo 1 tam giác có diện tích bằng 2( đvdt)
e. Gọi H, P là 2 điểm trên
+) Tìm m để H, P đối xứng nhau qua góc tọa độ
+) Có hay không giá trị m nguyên để H,P có tọa độ ngyên
f. Với m nào thì tiếp tuyến tại hai điểm cực trị vuông góc nhau
g. Định m để:
+) nhận I(,) làm tâm đối xứng
+) Điểm uốn có hoành độ thỏa mãn
BÀI 02
Cho hàm số , có đồ thị là
1. Tìm tất cả các điểm trên trục hoành mà từ đó vẽ được đúng 3 tiếp tuyến của đồ thị , trong đó có 2 tiếp tuyến vuông góc nhau
2. Gọi là hoành độ giao điểm của . Định m để:
a. Hoành độ lập thành cấp số nhân
b. = 27
3. Gọi . Định m để cắt © tại 3 điểm phân biệt có hoành độ thỏa mãn :
a. Hoành độ lập cấp số cộng
b. Hoành độ lập cấp số nhân
c. = 0
d. = 0
4. Định m để 2 cực trị của nằm về hai miền khác nhau của
5. Với m nào thì tiếp xúc
BÀI 03 Bài tập cơ bản mà
Cho hàm số có đồ thị là , m là tham số
Câu hỏi bình thường tương tự BÀI 01 VÀ BÀI 02
1. Cho m = 1, đồ thị là
a. Tìm trên đườmg thẳng y = 6 những điểm M có tọa độ nguyên sao cho qua m kẻ được :
* Duy nhất một tiếp tuyến đến
* Hai tiếp tuyến đến
* Ba tiếp tuyến đến
* Ba tiếp tuyến đến mà trong đó có hai tiếp tuyến vuông góc
b. Tương tự cho
c. Lập phương trình tiếp tuyến của để tiếp tuyến đó
* Có hệ số góc
* Song song với đường thẳng :
* Vuông góc với đường thẳng :
d. CMR: tồn tại duy nhất một tiếp tuyến qua điểm uốn của có hệ số góc nhỏ nhất
Câu hỏi khác
2. Tìm để đi qua điểm
3. Định m để hàm số đồng biến
*
*
4. Gọi là là hai cực trị của . Định m để :
*
*
*
*
*
*
*
5. Định m để hai cực trị của
* Nằm về hai phía trục tung
* Nằm về hai phía khác nhau của đường thẳng
* Một cực trị nằn trong còn cực trị kia nằm ngoài
*
* và điểm (1,0) thẳng hàng
6. Tìm quỹ tích điểm
7. Tìm m để điểm uốn của nằm trên đường phân giác thứ nhất của mặt phẳng tọa độ
8. Định m để tiếp tuyến tại điểm có hoành độ chắn hai trục tọa độ tạo thành tam giác có diện tích bằng 2

 

Có thể download miễn phí file .doc bên dưới

Ôn thi TN-HÀM SỐ BẬC BA

Đăng ngày 4/14/2009 5:38:21 PM | Thể loại: Toán học | Lần tải: 25 | Lần xem: 0 | Page: 1 | FileSize: 0.11 M | File type: doc
0 lần xem

đề thi Ôn thi TN-HÀM SỐ BẬC BA, Toán học. . Chúng tôi chia sẽ tới bạn đọc đề thi Ôn thi TN-HÀM SỐ BẬC BA .Để cung cấp thêm cho bạn đọc nguồn thư viện tham khảo giúp đỡ cho công tác giảng dạy, học tập và nghiên cứu khoa học, trân trọng kính mời bạn đọc đang tìm cùng xem , Thư viện Ôn thi TN-HÀM SỐ BẬC BA trong chuyên mục Toán học được chia sẽ bởi user Tường Lê Kim đến học sinh,sinh viên, giáo viên nhằm mục đích học tập , thư viện này đã chia sẽ vào danh mục Toán học , có tổng cộng 1 page, thuộc định dạng .doc, cùng chủ đề còn có Đề thi Toán học » Toán học 12 » ,bạn có thể download miễn phí , hãy chia sẽ cho mọi người cùng nghiên cứu HÀM SỐ BẬC BA BÀI 01: VẤN ĐỀ LIÊN QUAN TIẾP TUYẾN & CỰC TRỊ Cho hàm số , đồ thị , m : tham số 1) Cho m = 2 đồ thị là  a, kế tiếp là Tìm phương trình những đường thẳng đi qua A(,4) và tiếp xúc  b, nói thêm Tìm trên đồ thị những điểm K sao cho qua K: * Kẻ duy nhất một tiếp tuyến tới  * Kẻ hai tiếp tuyến phân biệt tới  * Kẻ đúng hai tiếp tuyến tới mà 2 tiếp tuyến tạo nhau một góc  * Kẻ 3 tiếp

https://nslide.com/de-thi/on-thi-tn-ham-so-bac-ba.vd5huq.html