Thu vien giao an dien tu,thu vien tai lieu, thu vien bai giang, thu vien de thi,
mam non, tieu hoc, lop 1,lop 2,lop 3,lop 4,lop 5,lop 6,lop 7,lop 8,lop 9,lop 10,lop 11,lop 12, giao trinh, luan van, do an, khoa luan
All giáo án Bài giảng Bài viết Tài liệu
Giáo án >  Toán học >  Toán học 11 > 
Thư viện Giáo án điện tử Giao an Toan 11 tron bo
Download tai lieu Giáo án Toán học Toán học 11 Giao an Toan 11 tron bo mien phi,tai lieu Giao an Toan 11 tron bo mien phi,bai giang Giao an Toan 11 tron bo mien phi 100%, cac ban hay chia se cho ban be cung xem
Type: doc
Date: 7/6/2016 7:05:44 AM
Filesize: 0.00 M
Download count: 5
Giá: Download miễn phí, free 100%
Xin hãy download về máy để xem, Mien phi 100%
SLIDE
MÔ TẢ TÀI LIỆU

CHUYÊN ĐỀ PHƯƠNG TRÌNH LƯỢNG GIÁC


Buổi 1: Phương trình lượng giác cơ bản,
Phương trình bậc nhất đối với một hàm số lượng giác

Mục đích, yêu cầu
HS nắm được công thức nghiệm của các ptlg cơ bản
Biết chuyển phương trình bậc nhất về phương trình cơ bản
Thành thạo giải các phương trình lượng giác cơ bản
Phương trình lượng giác cơ bản
+> sinx = a có nghiệm x = arcsina + k2 và x =  - arcsina + k2 với -1  a  1
sinx = sin có nghiệm x =  + k2 và x =  -  + k2, k  Z
+> cosx = a có nghiệm x = arccosa + k2, k  Z với -1  a  1
cosx = cos có nghiệm x =  + k2
+> tanx = a có nghiệm x = arctana + k, k  Z với a
tanx = tan có nghiệm x =  + k
+> cotx = a có nghiệm x = arccota + k, k  Z với a
tanx = cot có nghiệm x =  + k
Phương trình bậc nhất đối với một hàm số lượng giác
Dạng: a.sinf(x) + b = 0
a.cosf(x) + b = 0 (a  0)
a.tanf(x) + b = 0
a.cotf(x) + b = 0
Cách giải: - Chuyển vế b
- Chia 2 vế cho a  PT cơ bản
4. Các bài tập
Bài 1: Giải các phương trình sau:
1> 2>sin( 3x – 20o ) = -1 3>tan(  = 1
4>sin(x +  = 0 5> cot2x = - 6>cos(
7> 8> 9> 
10>  11> 12> 13>  14> sin( 2x-1 ) = sin( 3x + 1 ) 15> cos 3x = 
Bài 2: Giải các phương trình sau:
1>  2> 3>
4>  5>  6> 4tan( 5x – 1) + 6 = 0
7> - = 0 8>  9> cosx. [2sin(x – 300) + ] = 0


Bài 3. Tìm nghiệm của phương trình sau trong khoảng đã cho.
1>  với  2> với 
3> với  4> với 
Bài 4*: Giải các phương trình sau
1>  23> 
4>  567>  8
9>  10> cos7x - sin5x = ( cos5x - sin7x)
11>  12 > 
13>  17 
18>  15
………………………………………………………………………………………………….

Buổi 2: Phương trình bậc 2 đối với một hàm số lượng giác

Mục đích, yêu cầu:
HS nắm được dạng và cách giải phương trình bậc 2 đối với một hàm số lượng giác
Biết áp dụng một số công thức lượng giác, hằng đẳng thức lượng giác trong biến đổi pt để đưa về dạng bậc hai đối với một hàm số lượng giác
Yêu cầu học sinh thành thạo giải phương trình bậc hai đối với một hàm số lượng giác
2. Dạng phương trình :
a.sin2 f(x) + b.sinf(x) + c = 0
a.cos2 f(x) + b.cosf(x) + c = 0 (a  0)
a.tan2 f(x) + b.tanf(x) + c = 0
a.cot2 f(x) + b.tanf(x) + c = 0
Cách giải: Nếu đặt t = sinf(x) hoặc cosf(x) thì đk: -1  t  1
Nếu đặt t = tanf(x) hoặc cotf(x) thì t bất kì. Đưa về PT bậc 2 ẩn t

3. Chú ý sử dụng công thức: 
4. Các bài tập
Bài 1: Giải các phương trình sau
1>  2> 
3>  4> 
5>  6> 
7>  8> 6sin2(x + 300) + sin(x + 300) – 2 = 0
9>  10> 
11>  12>

13> 2tan2x + 7tanx – 4 = 0 14> cotx – 3cot2x = 0
15> 2cos2x + (1 - )cosx +  - 3 = 0 16> -3sin2x + 2sinx +
DOWNLOAD TÀI LIỆU
Bấm nút LIKE +1 để cảm ơn
SAU ĐÓ BẤM
Download Giao_an_Toan_11_tron_bo.rar