CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 8

 

CHUYÊN ĐỀ 1 - PHẤN TÍCH ĐA THỨC THÀNH NHÂN TỬ

A.  MỤC TIÊU:

* Hệ thống lại các dạng toán và các phương pháp phân tích đa thức thành nhân tử

* Giải một số bài tập về phân tích đa thức thành nhân tử

* Nâng cao trình độ và kỹ năng về phân tích đa thức thành nhân tử

B. CÁC PHƯƠNG PHÁP VÀ BÀI TẬP

I. TÁCH MỘT HẠNG TỬ THÀNH NHIỀU HẠNG TỬ:

Định lí bổ sung:

+ Đa thức f(x) có nghiệm hữu tỉ thì có dạng p/q trong đó p là ước của hệ số tự do, q là ước dương của hệ số cao nhất

+ Nếu f(x) có tổng các hệ số bằng 0 thì f(x) có một nhân tử là x – 1

+ Nếu f(x) có tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng tử bậc lẻ thì f(x) có một nhân tử là x + 1

+ Nếu a là nghiệm nguyên của f(x) và f(1); f(- 1) khác 0 thì đều là số nguyên. Để nhanh chóng loại trừ nghiệm là ước của hệ số tự do

1. Ví dụ 1: 3x2 – 8x + 4

Cách 1: Tách hạng tử thứ 2

3x2 – 8x + 4 =  3x2 – 6x  – 2x  + 4 = 3x(x – 2) – 2(x – 2) = (x – 2)(3x – 2)

Cách 2: Tách hạng tử thứ nhất:

3x2 – 8x + 4 =  (4x2 – 8x  + 4)  - x2 = (2x – 2)2 – x2 = (2x – 2 + x)(2x – 2 – x)

= (x – 2)(3x – 2)

Ví dụ 2:   x3 – x2 - 4

Ta nhân thấy nghiệm của f(x) nếu có thì x = , chỉ có f(2) = 0 nên x = 2 là nghiệm  của f(x) nên f(x) có một nhân tử là x – 2. Do đó ta  tách f(x) thành các nhóm có xuất hiện một nhân tử là x – 2

Cách 1:

x3 – x2 – 4 =   =

1

 


CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 8

 

Cách 2:

                             =

Ví dụ 3: f(x) =  3x3 –  7x2 + 17x – 5

Nhận xét: không là nghiệm của f(x), như vậy f(x) không  có nghiệm nguyên. Nên f(x) nếu có nghiệm thì là nghiệm hữu tỉ

Ta nhận thấy x = là nghiệm của f(x) do đó f(x) có một nhân tử là  3x – 1. Nên

f(x) =  3x3 –  7x2 + 17x – 5 =

       =

với mọi x nên không phân tích được thành

nhân tử nữa

Ví dụ 4: x3 + 5x2 + 8x  + 4

Nhận xét: Tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng tử bậc lẻ nên đa thức có một nhân tử là x + 1

x3 + 5x2 + 8x  + 4 = (x3 + x2 ) + (4x2 + 4x) + (4x + 4) = x2(x + 1) + 4x(x + 1) + 4(x + 1)

= (x + 1)(x2 + 4x + 4) = (x + 1)(x + 2)2

Ví dụ 5: f(x) = x5 – 2x4 + 3x3 – 4x2 + 2

Tổng các hệ số bằng 0 thì nên đa thức có một nhân tử là x – 1, chia f(x) cho (x – 1) ta có:

x5 – 2x4 + 3x3 – 4x2 + 2 = (x – 1)(x- x+ 2 x2   - 2 x  - 2)

Vì x- x+ 2 x2   - 2 x  - 2  không có nghiệm nguyên cũng không có nghiệm hữu tỉ nên không phân tích được nữa

Ví dụ 6: x4 + 1997x2 + 1996x + 1997 = (x4 + x2 + 1) + (1996x2 + 1996x + 1996)

=  (x2 + x  + 1)(x2 - x  + 1) + 1996(x2 + x  + 1)

=  (x2 + x  + 1)(x2 - x  + 1 + 1996) = (x2 + x  + 1)(x2 - x  + 1997)

Ví dụ 7: x2 -  x - 2001.2002 = x2 -  x - 2001.(2001 + 1)

= x2 -  x – 20012 - 2001 = (x2 – 20012) – (x + 2001) = (x + 2001)(x – 2002)

II. THÊM , BỚT CÙNG MỘT HẠNG TỬ:

1

 


CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 8

 

1. Thêm, bớt cùng một số hạng tử để xuất hiện hiệu hai bình phương:

Ví dụ 1: 4x4 + 81 = 4x4  + 36x2 + 81 - 36x2 = (2x2 + 9)2 – 36x2

= (2x2 + 9)2 – (6x)2 = (2x2 + 9 + 6x)(2x2 + 9 – 6x)

= (2x2 + 6x + 9 )(2x2 – 6x + 9)

Ví dụ 2: x8 + 98x4 + 1 = (x8 + 2x4 + 1 ) + 96x4

= (x4 + 1)2 + 16x2(x4 + 1) + 64x4 - 16x2(x4 + 1) + 32x4

= (x4 + 1 + 8x2)2  – 16x2(x4 + 1 – 2x2) = (x4 + 8x2 + 1)2  - 16x2(x2 – 1)2

= (x4 + 8x2 + 1)2  - (4x3 – 4x )2

= (x4 + 4x3 + 8x2 – 4x + 1)(x4 - 4x3 + 8x2 + 4x + 1)

2. Thêm, bớt cùng một số hạng tử để xuất hiện nhân tử chung

Ví dụ 1: x7 + x2 + 1 = (x7 – x)  + (x2 + x + 1 ) = x(x6 – 1) + (x2 + x + 1 )

=  x(x3  - 1)(x3 + 1) + (x2 + x + 1 ) = x(x – 1)(x2 + x + 1 ) (x3 + 1) + (x2 + x + 1)

=  (x2 + x + 1)[x(x – 1)(x3 + 1) + 1] = (x2 + x + 1)(x5 –  x+ x- x + 1)

Ví dụ 2: x7 + x5 + 1 = (x7 – x ) + (x5 – x2 ) + (x2  + x + 1)

= x(x3 – 1)(x3 + 1) + x2(x3 – 1) + (x2  + x + 1)

= (x2  + x + 1)(x – 1)(x4 + x) + x2 (x – 1)(x2  + x + 1) + (x2  + x + 1)

= (x2  + x + 1)[(x5 – x4 + x2 – x) + (x3 – x2 ) + 1] = (x2  + x + 1)(x5 – x4 + x3 – x + 1)

Ghi nhớ:

Các đa thức có dạng x3m + 1 + x3n + 2 + 1 như: x7 + x2 + 1 ; x7 + x5 + 1 ; x8 + x4 + 1 ;

x5 + x + 1 ; x8 + x + 1 ; … đều có nhân tử chung là  x2 + x + 1

III. ĐẶT BIẾN PHỤ:

Ví dụ 1:    x(x + 4)(x + 6)(x + 10) + 128 = [x(x + 10)][(x + 4)(x + 6)] + 128

              =  (x2 + 10x) + (x2 + 10x  + 24) + 128

Đặt  x2 + 10x + 12 =  y, đa thức có dạng

     (y – 12)(y + 12) + 128 = y2 – 144 + 128 = y2 – 16 = (y + 4)(y – 4)

=  ( x2 + 10x + 8 )(x2  + 10x  + 16 ) =  (x + 2)(x + 8)( x2 + 10x + 8 )

Ví dụ 2:  A = x4 + 6x3 + 7x2 – 6x + 1

Giả sử x 0 ta viết

1

 


CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 8

 

x4 + 6x3 + 7x2 – 6x + 1 =  x2 ( x2 + 6x + 7 – ) = x2 [(x2 + ) + 6(x - ) + 7 ]

Đặt  x - = y  thì  x2 + = y2 + 2, do đó

A = x2(y2 + 2 + 6y + 7) = x2(y + 3)2  =  (xy + 3x)2  = [x(x - )2 + 3x]2 = (x2 + 3x – 1)2

Chú ý: Ví dụ trên có thể giải bằng cách áp dụng hằng đẳng thức như sau:

A = x4 + 6x3 + 7x2 – 6x + 1 = x4 + (6x3 – 2x2 ) + (9x2 – 6x + 1 )

    =  x4 + 2x2(3x – 1) + (3x – 1)2   = (x2 + 3x – 1)2

Ví dụ 3:    A =

=

Đặt  = a, xy + yz + zx = b ta có

A =  a(a + 2b) + b2 = a2 + 2ab + b2  = (a + b)2   =  ( + xy + yz + zx)2

Ví dụ 4: B =

Đặt  x4 + y4 + z4 = a,  x2 + y2 + z2 = b, x + y + z = c ta có:

B = 2a – b2 – 2bc2 + c4 = 2a – 2b2  + b2 - 2bc2 + c4 = 2(a – b2) + (b –c2)2

Ta lại có: a – b2 =  - 2() và b –c2 = - 2(xy + yz + zx) Do đó;

B = - 4() + 4 (xy + yz + zx)2

   = 

Ví dụ 5:

Đặt a + b = m, a – b = n  thì 4ab = m2 – n2

      a3 + b3 = (a + b)[(a – b)2 + ab] = m(n2 + ). Ta có:

C = (m + c)3 – 4. = 3( - c3 +mc2 – mn2 + cn2)

= 3[c2(m - c) - n2(m - c)] = 3(m - c)(c - n)(c + n) = 3(a + b - c)(c + a - b)(c - a + b)

III. PHƯƠNG PHÁP HỆ SỐ BẤT ĐỊNH:

Ví dụ 1:  x4 - 6x3 + 12x2 - 14x + 3

1

 


CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 8

 

Nhận xét: các số  1, 3 không là nghiệm của đa thức, đa thức không có nghiệm nguyên củng không có nghiệm hữu tỉ

Như vậy nếu đa thức phân tích được thành nhân tử thì phải có dạng

(x2 + ax + b)(x2 + cx + d) = x4 + (a + c)x3 + (ac + b + d)x2 + (ad + bc)x + bd

đồng nhất đa thức này với đa thức đã cho ta có:

Xét bd = 3 với  b, d Z, b với b = 3 thì d = 1 hệ điều kiện trên trở thành

Vậy:   x4 - 6x3 + 12x2 - 14x + 3 =  (x2 - 2x + 3)(x2 - 4x  + 1)

Ví dụ 2:  2x4 - 3x3 - 7x2 + 6x + 8

Nhận xét: đa thức có 1 nghiệm là x = 2 nên có thừa số là  x - 2 do đó ta có:

    2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + ax2 + bx + c)

=  2x4 + (a - 4)x3 + (b - 2a)x2 + (c - 2b)x - 2c 

Suy ra:  2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x  - 4)

Ta lại có 2x3 + x2 - 5x  - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nahu nên có 1 nhân tử là  x + 1 nên  2x3 + x2 - 5x  - 4 = (x + 1)(2x2  - x - 4)

Vậy: 2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(x + 1)(2x2  - x - 4)

Ví dụ 3:  

12x2 + 5x - 12y2 + 12y - 10xy - 3 = (a x + by + 3)(cx + dy  - 1)

=  acx2  + (3c - a)x  + bdy2 + (3d - b)y + (bc + ad)xy – 3

1

 


CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 8

 

12x2 + 5x - 12y2 + 12y - 10xy - 3 = (4 x - 6y + 3)(3x + 2y  - 1)

BÀI TẬP:
 

Phân tích các đa thức sau thành nhân tử:

 

 

 

 

 

 

 

 

 

 

 

 

 

CHUYN ĐỀ 2 - SƠ LƯỢC VỀ CHỈNH HỢP,

 

 

 

 

 

 

1

 


CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 8

 

CHUYÊN ĐỀ 2: HOÁN VỊ, TỔ HỢP

A. MỤC TIÊU:

* Bước đầu HS hiểu về chỉnh hợp, hoán vị và tổ hợp

* Vận dụng kiến thức vào một ssó bài toán cụ thể và thực tế

* Tạo hứng thú và nâng cao kỹ năng giải toán cho HS

B. KIẾN THỨC:

I. Chỉnh hợp:

1. định nghĩa: Cho một tập hợp X gồm n phần tử. Mỗi cách sắp xếp k phần tử của tập hợp X ( 1 k n) theo một thứ tự nhất định gọi là một chỉnh hợp chập k của n phần tử ấy

Số tất cả các chỉnh hợp chập k của n phần tử được kí hiệu

2. Tính số chỉnh chập k của n phần tử

 

 

II. Hoán vị:

1. Định nghĩa: Cho một tập hợp X gồm n phần tử. Mỗi cách sắp xếp n phần tử của tập hợp X theo một thứ tự nhất định gọi là một hoán vị của n phần tử ấy

Số tất cả các hoán vị  của n phần tử được kí hiệu Pn

2. Tính số hoán vị của n phần tử  

( n! : n giai thừa)

III. Tổ hợp:

1. Định nghĩa: Cho một tập hợp X gồm n phần tử. Mỗi tập con của X gồm k phần tử  trong n phần tử của tập hợp X ( 0 k n) gọi là một tổ hợp chập k của n phần tử ấy

Số tất cả các tổ hợp chập k của n phần tử được kí hiệu

2. Tính số tổ hợp chập k của n phần tử

    

1

 


CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 8

 

 

C. Ví dụ:

1. Ví dụ 1:

Cho 5 chữ số: 1, 2, 3, 4, 5

a) có bao nhiêu số tự nhiên có ba chữ số, các chữ số khác nhau, lập bởi ba trong các chữ số trên

b) Có bao nhiêu số tự nhiên có 5 chữ số, các chữ số khác nhau, lập bởi cả 5 chữ số trên

c)Có bao nhiêu cách chọn ra ba chữ số trong 5 chữ số trên

Giải:

a) số tự nhiên có ba chữ số, các chữ số khác nhau, lập bởi ba trong các chữ số trên là chỉnh hợp chập 3 của 5 phần tử: = 5.(5 - 1).(5 - 2) = 5 . 4 . 3 =  60 số

b) số tự nhiên có 5 chữ số, các chữ số khác nhau, lập bởi cả 5 chữ số trên là hoán vị cua 5 phần tử (chỉnh hợp chập 5 của 5 phần tử):

  = 5.(5 - 1).(5 - 2).(5 - 3).(5 - 4) = 5 . 4 . 3 . 2 . 1 = 120 số

c) cách chọn ra ba chữ số trong 5 chữ số trên là tổ hợp chập 3 của 5 phần tử:

          = nhóm

2. Ví dụ 2:

Cho 5 chữ số 1, 2, 3, 4, 5. Dùng 5 chữ số này:

a) Lập được bao nhiêu số tự nhiên có 4 chữ số trong đó không có chữ số nào lặp lại? Tính tổng các số lập được

b) lập được bao nhiêu số chẵn có 5 chữ số khác nhau?

c) Lập được bao nhiêu số tự nhiên có 5 chữ số, trong đó hai chữ số kề nhau phải khác nhau

d) Lập được bao nhiêu số tự nhiên có 4 chữ số, các chữ số khác nhau, trong đó có hai chữ số lẻ, hai chữ số chẵn

Giải

1

 


CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 8

 

a) số tự nhiên có 4 chữ số, các chữ số khác nhau, lập bởi 4 trong các chữ số trên là chỉnh hợp chập 4 của 5 phần tử: = 5.(5 - 1).(5 - 2).(5 - 3) = 5 . 4 . 3 . 2  =  120 số

Trong mỗi hang (Nghìn, trăm, chục, đơn vị), mỗi chữ số có mặt: 120 : 5 = 24 lần

Tổng các chữ số ở mỗi hang: (1 + 2 + 3 + 4 + 5). 24 = 15 . 24 = 360

Tổng các số được lập: 360 + 3600 + 36000 + 360000 = 399960

b) chữ số tận cùng có 2 cách chọn (là 2 hoặc 4)

bốn chữ số trước là hoán vị của của 4 chữ số còn lại và có P4 =  4! = 4 . 3 . 2 = 24 cách chọn

Tất cả có 24 . 2 =  48 cách chọn

c) Các số phải lập có dạng , trong đó : a có 5 cách chọn, b có 4 cách chọn (khác a), c có 4 cách chọn (khác b), d có 4 cách chọn (khác c), e có 4 cách chọn (khác d)

Tất cả có:  5 . 4 . 4 . 4 . 4 = 1280 số

d) Chọn 2 trong 2 chữ số chẵn, có 1 cách chọn

chọn 2 trong 3 chữ số lẻ, có 3 cách chọn. Các  chữ số có thể hoán vị, do đó có:

1 . 3 . 4! =1 . 3 . 4 . 3 . 2 = 72 số

Bài 3: Cho . Trên Ax lấy 6 điểm khác A, trên Ay lấy 5 điểm khác A. trong 12 điểm nói trên (kể cả điểm A), hai điểm nào củng được nối với nhau bởi một đoạn thẳng.

Có bao nhiêu tam giác mà các đỉnh là 3 trong 12 điểm ấy

Giải

Cách 1: Tam giác phải đếm gồm ba loại:

+ Loại 1: các tam giác có một đỉnh là A, đỉnh thứ 2 thuộc Ax (có 6 cách chọn), đỉnh thứ 3 thuộc Ay (có 5 cách chọn), gồm có: 6 . 5 = 30 tam giác

+ Loại 2: Các tam giác có 1 đỉnh là 1 trong 5 điểm B1, B2, B3, B4, B5 (có 5 cách chọn), hai đỉnh kia là 2 trong 6 điểm A1, A2, A3, A4, A5, A6 ( Có   cách chọn)

Gồm 5 . 15 = 75 tam giác

1

 


CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 8

 

+ Loại 3: Các tam giác có 1 đỉnh là 1 trong  6 điểm A1, A2, A3, A4, A5, A6 hai đỉnh kia là 2 trong 5 điểm B1, B2, B3, B4, B5 gồm có: 6. tam giác

Tất cả có: 30 + 75 + 60 = 165 tam giác

Cách 2: số các tam giác chọn 3 trong 12 điểm ấy là 

Số bộ ba điểm thẳng hang trong  7 điểm thuộc tia Ax là:

Số bộ ba điểm thẳng hang trong  6 điểm thuộc tia Ay là:

Số tam giác tạo thành: 220 - ( 35 + 20) = 165 tam giác

D. BÀI TẬP:

Bài 1: cho 5 số: 0, 1, 2, 3, 4. từ các chữ số trên có thể lập được bao nhiêu số tự nhiên:

a) Có 5 chữ số gồm cả  5 chữ số ấy?

b) Có 4 chữ số, có các chữ số khác nhau?

c) có 3 chữ số,  các chữ số khác nhau?

d) có 3 chữ số,  các chữ số có thể giống nhau?

Bài 2: Có bao nhiêu số tự nhiên có 4 chữ số lập bởi các chữ số 1, 2, 3 biết rằng số đó chia hết cho 9

Bài 3: Trên trang vở có 6 đường kẻ thẳng đứng và 5 đường kẻ nằm ngang đôi một cắt nhau. Hỏi trên trang vở đó có bao nhiêu hình chữ nhật

 

1

 


CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 8

 

CHUYÊN ĐỀ 3 - LUỸ THỪA BẬC N CỦA MỘT NHỊ THỨC

 

A. MỤC TIÊU:

HS nắm được công thức khai triển luỹ thừa bậc n của một nhị thức: (a + b)n

Vận dụng kiến thức vào các bài tập về xác định hệ số của luỹ thừa bậc n của một nhị thức, vận dụng vào các bài toán phân tích đa thức  thành nhân tử

B. KIẾN THỨC VÀ BÀI TẬP VẬN DỤNG:

I. Nhị thức Niutơn:

 

Trong đó:         

II. Cách xác định hệ số của khai triển Niutơn:

1. Cách 1: Dùng công thức 

Chẳng hạn hệ số của hạng tử  a4b3 trong khai triển của (a + b)7

Chú ý:  a) với quy ước  0! = 1

b) Ta có: = nên

2. Cách 2: Dùng tam giác Patxcan

Đỉnh

 

 

 

 

 

 

1

 

 

 

 

 

 

Dòng 1(n = 1)

 

 

 

 

 

1

 

1

 

 

 

 

 

Dòng 2(n = 1)

 

 

 

 

1

 

2

 

1

 

 

 

 

Dòng 3(n = 3)

 

 

 

1

 

3

 

3

 

1

 

 

 

Dòng 4(n = 4)

 

 

1

 

4

 

6

 

4

 

1

 

 

Dòng 5(n = 5)

 

1

 

5

 

10

 

10

 

5

 

1

 

Dòng 6(n = 6)

1

 

6

 

15

 

20

 

15

 

6

 

1

Trong tam giác này, hai cạnh bên gồm các số 1; dòng k + 1 được thành lập từ dòng k

1

 

nguon VI OLET