ĐỊNH LÝ CEVA VÀ MENELAUS

Quy ước:  để ký hiệu P là giao điểm của AB và CD. Nếu các điểm A, B, C thẳng hàng, ta quy ước dấu  (vì vậy nếu B nằm giữa A và C thì , ngược lại )
Định Lý Ceva
Cho tam giác ABC. D, E, F lần lượt nằm trên các cạnh BC, AC, AB. Chứng minh rằng các mệnh đề sau là tương đương:
AD,BE,CF đồng quy tại một điểm.
.
.
Chứng minh:
Chúng ta sẽ chứng minh rằng 1.1 dẫn đến 1.2, 1.2 dẫn đến 1.3, và 1.3 dẫn đến 1.1.
Giả sử 1.1 đúng. Gọi P là giao điểm của AD, BE, CF. Theo định lý hàm số sin trong tam giác APD, ta có:(1)
Tương tự, ta cũng có: (2)
(3)
Nhân từng vế của (1), (2), (3) ta được 1.2.
Giả sử 1.2 đúng. Theo định lý hàm số sin trong tam giác ABD và tam giác ACD ta có:Do đó: (4)
Tương tự, ta cũng có:(5)
(6)
Nhân từng vế của (4), (5), (6) ta được 1.3.
Giả sử 1.3 đúng, ta gọi 
Theo 1.1 và 1.2, ta có:
 hay: Do đó:.
Nhận xét.
Với định lý Ceva, ta có thể chứng minh được các đường trung tuyến, đường cao, đường phân giác trong của tam giác đồng quy tại một điểm. Các điểm đó lần lượt là trọng tâm (G), trực tâm (H), tâm đường tròn nội tiếp tam giác (I). Nếu đường tròn nội tiếp tam giác ABC cắt AB, BC, CA lần lượt là tại F, D, E. Khi đó, ta có: AE=AF; BF=BD; CD=CF. Bằng định lý Ceva, ta chứng minh được AD, BE, CF đồng quy tại một điểm, điểm đó gọi là điểm Gergonne (Ge) của tam giác ABC (hình dưới).








Lưu ý: Định lý Ceva có thể được suy rộng bởi những giao điểm nằm ngoài tam giác ABC mà không nhất thiết phải nằm trong nó. Vì vậy, các điểm D, E, F có thể nằm ngoài các cạnh BC, CA, AB như hình bên.









Ví dụ sau sẽ cho thấy rõ tác dụng của định lý Ceva.
Bài toán. [IMO 2001 Short List] Cho điểm A1 là tâm của hình vuông nội tiếp tam giác nhọn ABC có hai đỉnh nằm trên cạnh BC. Các điểm B1, C1 cũng lần lượt là tâm của các hình vuông nội tiếp tam giác ABC với một cạnh nằm trên AC và AB. Chứng minh rằng AA1, BB1, CC1 đồng quy.
Lời giải:
Gọi A2 là giao điểm của AA1 và BC. B2 và C2 được xác định tương tự.
Theo định lý hàm số sin, ta có:
 hay 
Tương tự:  hay 
Do đó, ta được: (1)
Chứng minh hoàn toàn tương tự, ta cũng được:
(2)
(3)
Nhân từng vế của (1), (2), (3) kết hợp định lý Ceva ta được điều cần chứng minh.
Bài tập áp dụng:
Qua các điểm A và D nằm trên đường tròn kẻ các đường tiếp tuyến, chúng cắt nhau tại điểm S. Trên cung AD lấy các điểm A và C. Các đường thẳng AC và BD cắt nhau tại điểm P, các đường thẳng AB và CD cắt nhau tại điểm O. Chứng minh rằng đường thẳng PQ chứa điểm O.
Trên các cạnh của tam giác ABC về phía ngoài ta dựng các hinh vuông. A1, B1, C1, là trung điểm các cạnh của các hình vuông nằm đối nhau với các cạnh BC, CA, AB tương ứng. Chứng minh rằng các đường thẳng AA1, BB1, CC1 đồng quy.
Chứng minh các đường cao, đường trung tuyến, tâm đường tròn nội tiếp,ngoại tiếp tam giác đồng quy tại một điểm.
Trên các cạnh BC, CA, AB của tam giác ABC lấy các điểm A1, B1, C1 sao cho các đường thẳng AA1, BB1, CC1 đồng quy tại một điểm. Chứng minh rằng các đường thẳng AA2, BB2, CC2 đối xứng vớicác đường thẳng đó qua các đường phân giác tương ứng, cũng đồng quy.

Định Lý Menelaus
Cho tam giác ABC. Các điểm H, F, G lần lượt nằm trên AB, BC, CA. Khi đó:
M, N, P thẳng hàng khi
nguon VI OLET