Giải toán bằng phương pháp toạ độ

Có lẽ René Descartes là một người không giỏi Hình học cho lắm. Có lẽ ông luôn nhức đầu với việc vẽ thêm, phát hiện ra những mối tương quan hình học từ các tứ giác nội tiếp, các cung chứa góc, các đường Ceva … Từ đó mà ông đã nghĩ ra môn hình học giải tích, để đưa các bài toán hình học về các bài toán tính toán đại số quen thuộc mà có lẽ mới là sở trường của ông.

Làm một cuộc điều tra bất kỳ đối với một nhóm học sinh phổ thông, có thể thấy trước kết quả là hầu hết các em sợ hình học và thích đại số. Cho dù là hình học phẳng hay hình học không gian đều là nỗi khiếp sợ đối với đại đa số các em, kể cả đối với một số em chuyên toán. Thế nhưng, hầu như tất cả các học sinh lại không cảm thấy sợ môn hình học giải tích mà trái lại, coi đây là một trong những môn dễ chịu nhất. Như vậy thế mạnh của phương pháp toạ độ nằm ở đâu và nó có điểm yếu gì hay không? Trong bài viết này, chúng tôi sẽ cố gắng làm rõ những điều này

Chúng ta sẽ bắt đầu từ những ví dụ mở đầu, tiếp đến là những công thức, tính chất, định lý bổ sung (không có trong SGK) của hình giải tích phẳng sẽ được áp dụng trong các tính toán. Phần trọng tâm của bài viết sẽ đề cập đến việc đưa hệ trục toạ độ vào bài toán hình học như thế nào để có được lời giải một cách gọn gàng nhất, phân tích với những bài toán nào thì hình giải tích có thể “xử lý” tốt.
1. Những ví dụ mở đầu

Bài toán 1. Cho tứ giác ABCD có AB vuông góc với CD và AB = 2, BC = 13, CD = 8, DA = 5. Hãy tính diện tích tứ giác ABCD.
Sự kiện AB vuông góc với CD gợi cho chúng ta đến ý tưởng đưa hệ trục toạ độ vào bài toán. Giả sử AB cắt CD tại O. Chọn hệ trục toạ độ có Ox trùng với CD và Oy trùng với AB. Đặt D(x, 0) và A(0, y) thì từ các dữ kiện CD = 4 và AB = 2 ta được C(x+8, 0), B(0, y+2). Từ các dữ kiện BC = 13, DA = 5, ta được
x2 + y2 = 25 (1)
(x+8)2 + (y+2)2 = 169 (2)
Trừ (2) cho (1), ta được 4x + y = 19. Thay y = 19 – 4x vào (1), ta được
x2 + 361 – 152x + 16x2 = 25
17x2 – 152x + 336 = 0
x = 4 ( x = 84/17 => y = 3 ( -13/17 (loại).
Vậy x = 4, y = 3. Tứ giác ABCD có toạ độ các đỉnh là A(0, 3), B(0, 5), C(12, 0), D(4, 0). Từ đó dễ dàng tính được diện tích tứ giác bằng
SABCD = SOBC – SOAD = (1/2)5.12 – (1/2)3.4 = 24.

Ghi chú: Bài toán này có thể giải mà không dùng đến hệ trục toạ độ, chỉ cần đặt OD = x, OA = y rồi lập ra các hệ phương trình như trên.

Bài toán 2. Cho đường thẳng d và điểm P nằm ngoài d. Tìm quỹ tích những điểm M cách đều P và d.

Bài toán này phát biểu hoàn toàn có vẻ như một bài quỹ tích mà ta có thể dựng được bằng thước và compa. Tuy nhiên các thầy cô và các bạn đã biết là kết quả không phải như vậy. Quỹ tích là một parabol!

Đây cũng chính là một thế mạnh của hình học giải tích so với hình học thuần tuý. Hình học giải tích cho phép tìm ra các quỹ tích vượt ngoài ra các hình «vẽ được» bằng thước và compa, nghiên cứu các tính chất hình học của các đường cong đại số bất kỳ.

Bài toán 3. Cho tam giác ABC. M là một điểm bất kỳ nằm trong mặt phẳng tam giác. Chứng minh rằng

Trong đó là diện tích có hướng của tam giác XYZ.

Đây là một định lý có nhiều ứng dụng quan trọng trong các bài toán về tâm tỷ cự. Chẳng hạn từ định lý này suy ra “bộ trọng lượng”các điểm đặc biệt trong tam giác như G (trọng tâm), H (trực tâm), O (tâm đường tròn ngoại tiếp), I (tâm đường tròn nội tiếp) …
Có nhiều cách chứng minh cho định lý này, chẳng hạn cách chứng minh trực tiếp bằng
nguon VI OLET